

User's Manual Line Scan Camera Type : RCDL4K8GE

NIPPON ELECTRO-SENSORY DEVICES CORPORATION

GigE Vision is a registered trademark of AIA

For Customers in the U.S.A.

This equipment has been tested and found to comply with the limits for a Class A digital device, in accordance with Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his or her own expense.

For Customers in the EU

This equipment has been tested and found to comply with the essential requirements of the EMC Directive 2004/108/EC, based on the following specifications applied: EU Harmonised Standards EN55032:2015 Class A EN55032:2012 Class A EN55011:2009+A1:2010 Class A EN61000-6-2:2005

Directive on Waste Electrical and Electronic Equipment (WEEE)

Please return all End of Life NED products to the distributor from whom the product was purchased for adequate recycling and / or disposal. All costs of returning the Product to NED are borne by the shipper.

Introduction

Thank you for purchasing NED's Line Scan Camera. We look forward to your continued custom in the future.

For safety use

- For your protection, please read these safety instructions completely before operating the product and keep this manual for future reference.
- The following symbols appear next to important information regarding safe product handling.

🔥 Warning	If the product is not handled properly, this may result in serious injury or possible death.
A Caution	If the product is not handled properly, this may result in physical injury or cause property damage.

Safety precaution

- Never disassemble or modify this product, unless otherwise specified to do so in this manual.
- When hands are wet, avoid handling this product and do not touch any of the connection cable pins or other metallic components.
- Do not operate this product in an environment that is exposed to rain or other severe external elements, hazardous gases or chemicals.
- If the product is not to be used for an extended period of time, as a safety precaution, always unplug the connection cable from the camera unit.
- If the product installation or inspection must be executed in an overhead location, please take the necessary measures to prevent the camera unit and its components from accidentally falling to the ground.
- If smoke, an abnormal odor or strange noise is emitted from the camera unit, first turn OFF power, then unplug the cable from the camera unit.
- This product is not intended for use in a system configuration built for critical applications.

Instructions before use

- Only operate this product within the recommended environmental temperature range.
- Use only the specified power source and voltage rating.
- Do not drop this product. Avoid exposure to strong impact and vibrations.
- Install the camera unit in a well-ventilated environment, in order to prevent the camera from overheating.
- If the camera must be installed in an environment containing dust or other particles, take required measures to protect the camera unit from dust adhesion.
- Do not unplug the cable while power is being supplied to the camera unit. To prevent product damage, always shut down the power supply before unplugging the power cable.
- When the surface of the camera window becomes dirty due to dust or grime, black smudges appear in the displayed image. Use an air blower to remove the dust particles. Dip a cotton swab into ethanol alcohol and clean the camera window. Be careful not to scratch the glass.
- Use of non-infrared lighting such as a fluorescent lamp is recommended. If halogen lighting is employed, always install an infrared filter into your system configuration.
- Note that exposure to long wavelength light outside of the sensors visible optical range can affect the image.
- Sensitivity may fluctuate depending on the spectral response level of the light source. In cases like this, changing the light source to one with a different spectral response level may reduce this problem. Moreover, this irregular sensitivity can be completely lost by using 4.8 pixel correction function. Please refer to 4.8 pixel correction function for details.
- Note that when the sensor is exposed to excessive quantities of light, blooming may occur, because this product does not have a special Anti-Blooming function.
- Suitable measures should be taken to protect the colour filter on sensor from bright light when it is not in use.

If the sensor is continually exposed to excessive amount of light over time, the colour filter may become faded.

- For stabilized image capturing, turn on the power supply and execute aging for ten to twenty minutes before actually using the camera unit.
- Do not share the power supply with motor units or other devices that generate noise interference.
- Do not disconnect the camera while rewriting the embedded memory.
- When you change the exposure mode that is set at the NED factory, input control signal (CC1) from the capture board.
- SG (Signal Ground) and FG (Frame Ground) are connected inside the camera. Please install your system such that a loop is not created by the GND potential difference.

Product Warranty

Warranty Period

- The product warranty period, as a general rule, is two years from purchase; however for detailed conditions please contact the sales representative for your region/country.
- However, in some cases due to the usage environment, usage conditions and/or frequency of use, this warranty period may not be applicable.

Warranty Scope

- Product repair will be performed on a Return To Manufacturer basis. On-site maintenance will incur additional charges.
- If defects in material or workmanship occur during the warranty period, the faulty part will be replaced or repaired by us free of charge. Return shipping charges must be paid by the sender. However, the following cases fall outside of the scope of this warranty:
- The expired date of the warranty period on the product repaired or replaced during the warranty period of the original product is the same as the expired date of the warranty period on the original product.

Exclusions from Warranty Coverage

- We will under no circumstances assume responsibility for the following cases: damage caused by fire, earthquake, other acts of a third party, other accidents, negligent or intentional misuse by the user, or other usage under extraordinary circumstances.
- Damages (e.g. loss of business profits, business interruption, etc.) resulting from use or non-use.
- Damages caused by use other than as described in this document.
- Damages resulting from malfunction due to a connected device.
- Damages resulting from repairs or modifications performed by the customer.

Fault Diagnosis

- As a general rule, in the first instance fault diagnosis should take the form of a telephone call or an email to enable us to assess the circumstances of the malfunction.
- However, depending on the customer's requests, we, or our agent, may require an additional fee for this service.

 $\mathbf{5}$

Exclusion of Liability for Compensation for Missed Opportunities

Regardless of whether within the warranty period or not, our warranty does not cover compensation for missed opportunities for our customers, or our customers' customers, caused by a fault of our products, nor for damage to products other than our own, or related business.

Note about Product Usage

This product has been designed and manufactured as a general-purpose product for general industry. In applications expected to be life-critical or safety-critical, the installer or user is requested to install double or triple failsafe systems.

Repair Service Outline

The cost of dispatching engineers etc. for repair service is not included in the price of purchased and supplied goods. On request, arrangements can be made separately.

Scope of Repair Service

The above assumes business dealings and usage to take place in the customer's region / country. In cases of business dealings and/or usage outside the customer's region/country, separate consultation is required.

Table of Contents

1 Product Outline	11
1.1 Features	11
1.2 Applications	11
1.3 Image Sensor	13
1.4 RGB Synthesis method with Bayer at pixel	13
1.5 Performance Specifications	14
2 Camera Setting and Optical Interface	16
2.1 Setting Camera	16
2.2 Fixing Camera	16
2.3 Optical Interface	18
2.4 Calibration with User White Pixel Correction Function	19
3 Hardware	21
3.1 Camera Connection	21
3.2 Input / Output Connectors and Indicator	23
3.3 Power Supply Connection	24
3.4 External Trigger Connector (HR10G-10R-12PB)	25
3.4.1 RS-422 Input	26
3.4.2 LVDS Input	26
3.4.3 TTL Input	27
3.4.4 RS-422 Output	27
3.4.5 LVDS Output	28
3.4.6 TTL Output	28
3.4.7 Relation of External Trigger Input and Output	29
3.5 RJ-45 Connector	30
3.6 LED indicating camera status	30
4 Camera Control	31
4.1 Flow of Camera Control	31
4.1.1 GenICam overview	31
4.1.2 List of Camera Control Registers	31
4.2 Details on register system	38
4.2.1 Category	38
4.2.2 Device Control	39

4.2.2.1 Displaying Temperature of Camera	
4.2.3 Image Format Control	40
4.2.3.1 OffsetX and Width Settings	40
4.2.3.2 Height Setting	41
4.2.3.3 Setting Pixel Horizontal Binning Mode	42
4.2.3.4 Setting Horizontal Pixel Binning	42
4.2.3.5 Setting Pixel Vertical Binning Mode	42
4.2.3.6 Setting Vertical Pixel Binning	43
4.2.3.7 Scan Direction	43
4.2.3.8 Pixel Format Setting	43
4.2.3.9 Test Pattern	44
4.2.4 Acquisition Control	47
4.2.4.1 Setting Line Rate	47
4.2.4.2 Setting Trigger Selector	
4.2.4.3 Setting Permission for using External Trigger	
4.2.4.4 Setting Trigger signal	
4.2.4.5 Setting Exposure Mode	
4.2.4.6 Setting Exposure Time	50
4.2.5 Analog Control	51
4.2.5.1 Setting Analog gain	51
4.2.5.2 Gain type selection	51
4.2.5.3 Setting Digital gain	52
4.2.5.4 Offset type selection	52
4.2.5.5 Setting Digital Offset	53
4.2.5.6 Setting Balance White Auto	53
4.2.5.7 Setting Gamma correction	53
4.2.6 Color Transformation Control	54
4.2.6.1 Color Transformation settings	54
4.2.6.2 Select Color Transformation item	54
4.2.6.3 Setting Color Transformation Value	56
4.2.7 Digital IO Control	56
4.2.7.1 Setting I/O signal	56
4.2.7.2 Setting Line Mode	56
4.2.7.3 Setting Input Signal Polarity Reversal	57
4.2.7.4 Setting Line Source	57
4.2.7.5 Setting I/O Signal Format	
4.2.7.6 Setting External Line Trigger Chattering Prevention	59
4.2.8 Encoder Control	59

4.2.8.1 Setting Encoder Control	59
4.2.8.2 Setting Input Signal for Encoder Source A	60
4.2.8.3 Setting Input Signal for Encoder Source B	60
4.2.8.4 Setting Encoder Mode	60
4.2.8.5 Setting Encoder Divider	61
4.2.8.6 Setting Encoder Output Mode	62
4.2.8.7 Setting Encoder Status	62
4.2.8.8 Setting Time of Encoder Timeout	62
4.2.8.9 Setting Encoder Reset Signal	63
4.2.8.10 Setting Encoder Reset Activation	63
4.2.9 User Set Control	64
4.2.9.1 Setting Memory Selection	64
4.2.9.2 Setting Memory Loading	64
4.2.9.3 Setting Memory Saving	65
4.2.9.4 Resetting Factory camera setting	65
4.2.10 Transport Layer Control	66
4.2.10.1 Setting Persistent IP	66
4.2.10.2 Packet Size	67
4.2.10.3 Packet Delay	
4.2.11 NED additional features	69
4.2.11 NED additional features 4.2.11.1 Setting Pixel Correction	69 69
4.2.11 NED additional features 4.2.11.1 Setting Pixel Correction 4.2.11.2 Setting Pixel Correction Target Value	69 69 69
 4.2.11 NED additional features	69 69 69 70
 4.2.11 NED additional features	69 69 70 70
 4.2.11 NED additional features 4.2.11.1 Setting Pixel Correction 4.2.11.2 Setting Pixel Correction Target Value 4.2.11.3 Saving White Pixel Correction Data 4.2.11.4 Saving Black Pixel Correction Data 4.2.11.5 Setting conditions of White pixel correction and Black correction 	69 69 70 70 70
 4.2.11 NED additional features 4.2.11.1 Setting Pixel Correction 4.2.11.2 Setting Pixel Correction Target Value 4.2.11.3 Saving White Pixel Correction Data 4.2.11.4 Saving Black Pixel Correction Data 4.2.11.5 Setting conditions of White pixel correction and Black correction 4.3 Setting Procedure of External Trigger Settings (for Examples) 	69 69 70 70 70 70
 4.2.11 NED additional features 4.2.11.1 Setting Pixel Correction 4.2.11.2 Setting Pixel Correction Target Value 4.2.11.3 Saving White Pixel Correction Data 4.2.11.4 Saving Black Pixel Correction Data 4.2.11.5 Setting conditions of White pixel correction and Black correction 4.3 Setting Procedure of External Trigger Settings (for Examples) 4.3.1 One-phase Trigger setting (for Example). 	
 4.2.11 NED additional features 4.2.11.1 Setting Pixel Correction 4.2.11.2 Setting Pixel Correction Target Value 4.2.11.3 Saving White Pixel Correction Data 4.2.11.4 Saving Black Pixel Correction Data 4.2.11.5 Setting conditions of White pixel correction and Black correction 4.3 Setting Procedure of External Trigger Settings (for Examples) 4.3.1 One-phase Trigger setting (for Example) 4.3.2 Two-phase Trigger setting (for Example) 	69 69 70 70 71 71 71
 4.2.11 NED additional features 4.2.11.1 Setting Pixel Correction 4.2.11.2 Setting Pixel Correction Target Value 4.2.11.3 Saving White Pixel Correction Data 4.2.11.4 Saving Black Pixel Correction Data 4.2.11.5 Setting conditions of White pixel correction and Black correction 4.3 Setting Procedure of External Trigger Settings (for Examples) 4.3.1 One-phase Trigger setting (for Example) 4.3.2 Two-phase Trigger setting (for Example) 4.3.3 Software Trigger setting (for Example) 	69 69 70 70 70 71 71 72 73
 4.2.11 NED additional features 4.2.11.1 Setting Pixel Correction 4.2.11.2 Setting Pixel Correction Target Value 4.2.11.3 Saving White Pixel Correction Data 4.2.11.4 Saving Black Pixel Correction Data 4.2.11.5 Setting conditions of White pixel correction and Black correction 4.3 Setting Procedure of External Trigger Settings (for Examples) 4.3.1 One-phase Trigger setting (for Example) 4.3.2 Two-phase Trigger setting (for Example) 4.3.3 Software Trigger setting (for Example) 4.4 Calculating the Maximum Value of Packet Delay 	
 4.2.11 NED additional features 4.2.11.1 Setting Pixel Correction 4.2.11.2 Setting Pixel Correction Target Value 4.2.11.3 Saving White Pixel Correction Data 4.2.11.4 Saving Black Pixel Correction Data 4.2.11.5 Setting conditions of White pixel correction and Black correction 4.3 Setting Procedure of External Trigger Settings (for Examples) 4.3.1 One-phase Trigger setting (for Example) 4.3.2 Two-phase Trigger setting (for Example) 4.3.3 Software Trigger setting (for Example) 4.4 Calculating the Maximum Value of Packet Delay 4.5 Exposure Mode and Timing 	
 4.2.11 NED additional features 4.2.11.1 Setting Pixel Correction 4.2.11.2 Setting Pixel Correction Target Value 4.2.11.3 Saving White Pixel Correction Data 4.2.11.4 Saving Black Pixel Correction Data 4.2.11.5 Setting conditions of White pixel correction and Black correction 4.3 Setting Procedure of External Trigger Settings (for Examples) 4.3.1 One-phase Trigger setting (for Example) 4.3.2 Two-phase Trigger setting (for Example) 4.3.3 Software Trigger setting (for Example) 4.4 Calculating the Maximum Value of Packet Delay 4.5 Exposure Mode and Timing 4.5.1 Free run Exposure Mode 	
 4.2.11 NED additional features	
 4.2.11 NED additional features	69 69 70 70 71 71 71 71 71 71 71 71 71 71 71 73 73 75 75 75 76 77
 4.2.11 NED additional features	
 4.2.11 NED additional features 4.2.11 NED additional features 4.2.11.1 Setting Pixel Correction 4.2.11.2 Setting Pixel Correction Target Value 4.2.11.3 Saving White Pixel Correction Data 4.2.11.4 Saving Black Pixel Correction Data 4.2.11.5 Setting conditions of White pixel correction and Black correction 4.3 Setting Procedure of External Trigger Settings (for Examples) 4.3.1 One-phase Trigger setting (for Example) 4.3.2 Two-phase Trigger setting (for Example) 4.3.3 Software Trigger setting (for Example) 4.4 Calculating the Maximum Value of Packet Delay 4.5 Exposure Mode and Timing 4.5.1 Free run Exposure Mode 4.5.2 External Trigger (Timed) Exposure Mode 4.5.3 External Trigger (TriggerWidth) Exposure Mode 4.6 Setting Offset 4.7 Setting Gain 	69 69 70 70 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 72 73 75 75 76 76 78 79 79
 4.2.11 NED additional features 4.2.11.1 Setting Pixel Correction 4.2.11.2 Setting Pixel Correction Target Value 4.2.11.3 Saving White Pixel Correction Data 4.2.11.4 Saving Black Pixel Correction Data 4.2.11.5 Setting conditions of White pixel correction and Black correction 4.3 Setting Procedure of External Trigger Settings (for Examples) 4.3.1 One-phase Trigger setting (for Example) 4.3.2 Two-phase Trigger setting (for Example) 4.3.3 Software Trigger setting (for Example) 4.3.4 Calculating the Maximum Value of Packet Delay 4.5.1 Free run Exposure Mode 4.5.2 External Trigger (Timed) Exposure Mode 4.5.3 External Trigger (TriggerWidth) Exposure Mode 4.6 Setting Offset 4.7 Setting Gain 4.8 Pixel Correction 	

5 Basic Camera Setting Checks	
5.1 Before Power On	84
5.2 After Power On	84
6 Sensor Handling Instructions	
6.1 Electrostatic Discharge and the Sensor	85
6.2 Protecting Against Dust, Oil and Scratches	85
6.3 Cleaning the Sensor Window	85
7 Troubleshooting	
7.1 No Image	86
7.2 Noise on Image	88
7.3 Camera becomes hot	89
8 Others	90
8.1 Notice	90
8.2 Contact for support	90
8.3 Product Support	90

1 Product Outline

1.1 Features

- Color line scan camera with 7µm 4096 x 2 pixels sensor of Bayer color arrangement
- Easy control of gain / offset / video output with external software
- GigE Vision® external interface for easy connection between camera and PC
- Data transmission up to 100m using a CAT-5e cable or above
- Single power source DC12~15V for operation
- Pixel non-linearity / shading correcting function

1.2 Applications

- Inspection of transparent panels and PCBs
- Inspection of high speed moving objects
- Flat panel display inspection
- Inspection of glass and sheet-like objects
- Printed circuit board inspection
- This camera utilizes an Intelligent Transportation System
- Outdoor surveillance

An example of visual inspection of metallic parts is shown below.

Figure 1-2-1 Visual Inspection of Metallic Cylinder

Object of inspection (example)

Metallic parts with cylindrical/conical shapes (surface and roller end faces)

- Automobile component
 Architectural reinforcement parts
- Various pin parts

Typical detection item

Chip · Dent · Scratch · Chipped end faces · External dimensions

Device specification

- 1. Camera: 4096 pixel Line scan camera
- 2. Controller: Dedicated software for PC system

1.3 Image Sensor

This camera has a Bayer array dual of 4096 pixels with a pixel size of 7 μ m x 7 μ m A line color CMOS sensor is used to obtain high sensitivity and high quality images.

• The sensor array is as follows.

1.4 RGB Synthesis method with Bayer at pixel

	4096	4095	4094	4093	 4	3	2	1	
Scan #1	B1	G1	B1	G1	B1	G1	B1	G1	Y coordinate #1
	G0	RO	G0	R0	G0	R0	G0	R0	Y coordinate #0

The object moves for one column of pixels and is scanned.

The object moves for next one column of pixels and is scanned.

Soon #2	B2	G2	B2	G2	B2	G2	B2	G2	Y coordinate #2
30an #2	G1	R1	G1	R1	G1	R1	G1	R1	Y coordinate #1

The scanned values of G1 and B1 of the upper column of pixels at Scan #1

and the scanned values of G1 and R1 of the lower column of pixels at Scan #2 are held in memory.

4096	4095	4094	4093	4	3	2	1	
	R1		R1		R1		R1	
G1	G1	G1	G1	G1	G1	G1	G1	RGB color (Y coordinate #1)
B1		B1		B1		B1		

The values of R at even numbering pixels and B at odd numbering pixels are determined by interpolation.

RGB color values at each pixel can be synthesized using the above data.

1.5 Performance Specifications

The Performance Specifications are shown below. The data is shown when the camera is operating at the maximum scan rate, unless otherwise specified.

	Items	Specifica	ations			
Number of Pix	kels	409	6			
Pixel Size H	x V (µm)	7 x ⁻	7			
Sensor Lengt	h (mm)	28.672				
Data Rate (M	Hz)	125				
Scan Rate [kl	lz]/ (μs)	RGB 8 Packed	8.4 / (119.0)			
Responsivity [Minimum Ga Value]	(V/ [lx⋅s]) (typically) ain, Pixel Correction Initial	$\begin{array}{ c c c c c c } & 4096 \\ \hline & 7 \times 7 \\ \hline & 28.672 \\ \hline & 125 \\ \hline & RGB 8 Packed & 8.4 / (119.0) \\ \hline & 40 \\ \hline & 125 \\ \hline & RGB 8 Packed & 8.4 / (119.0) \\ \hline & 40 \\ \hline & 125 \\ \hline & RGB 8 Packed & 8.4 / (119.0) \\ \hline & 40 \\ \hline & Analog 5V Conversion Sensitivity/ \\ \hline & Analog Amplifier : x 1 ~ x 10 \\ \hline & Digital(ALL) & : x 1 ~ x 2 \\ \hline & Digital(ALL) & : x 1 ~ x 2 \\ \hline & Digital(R,G,B) & : x 1 ~ x 3 \\ \hline & ALL : -40~40 \\ \hline & R,G,B : -20~20 \\ \hline & GigE \\ \hline & Line In1~3: \\ Exposure trigger, Frame trigger or Encoder sign \\ \hline & RJ45 \\ \hline & Hirose: HR10G (6Pin) \\ \hline & Hirose: HR10G (12Pin) \\ \hline & F Mount \\ \hline & 0 ~ 50 \\ \hline & DC12 ~ 15[\pm5\%] \\ \hline cally & 610 \\ \hline & 60x91.3x100 (F Mount) \\ \hline & 1. Auto White Balance \\ 2 Shading Correction \\ \hline \end{array}$				
Gain Adjustab Analog Amplif	le Range ier +Digital	Analog Amplifie Digital(ALL) Digital(R,G,B)	r : x 1 ~ x 10 : x 1 ~ x 2 : x 1 ~ x 3			
Digital Offset	Adjustable Range (DN)	ALL : R,G,B	-40~40 : -20~20			
Video output f	ormat	GigE				
Control Input		Line In1~3: Exposure trigger. Frame trigger or Encoder signal				
	Data/Controller	RJ4	5			
Connectors	Power Supply	Hirose: HR1	0G (6Pin)			
	External Trigger	Hirose: HR10)G (12Pin)			
Lens Mount		F Mo	unt			
Operating Ter No Condensa	nperature (°C) tion	0 ~	50			
Power Supply	Voltage (V)	DC12 ~ 15[±5%]				
Consumption	Current (mA) * typically	610)			
Size W x H :	x D (mm)	60x91.3x100	(F Mount)			
Mass (g) (Ca	amera only)	475 (F N	lount)			
Additional Fur	nctions	 Auto White Balance Shading Correction Gain/Offset /Video Outp Programmable Exposu Software Torigger Test Pattern Output 	out Control re Control			
		7. Two-phase Trigger				

Table 1-5-1 Performance Specifications

8. 2×2 Binning Mode
9. RGB Color Matrix Transforming
10. Gamma Transforming

Remarks: 1) DN : Digital Number (8bit : 0 -255 / 10bit : 0 -1023)

2) Measurements were made at room temperature

The spectral Responsivity is shown below.

Figure 1-5-1 Spectral Responsivity

2 Camera Setting and Optical Interface

2.1 Setting Camera

Use the M4 screw holes or the screw hole for a tripod to set the camera.

2.2 Fixing Camera

Use the M4 screw holes (4 places at the front, 8 places at the side) to fix the camera. Or use the 1/4"-20UNC screw hole (the screw hole for a tripod, 1 place at the side) to fix the camera.

If using the front panel M4 mounting holes, the screw length for fixing the camera should be less than 6mm.

No X-, Y-axis orientation and tilt adjustment mechanism is available. Please provide an adjustment mechanism yourself as necessary.

The dimensions for camera are shown below.

Figure 2-2-1 Dimensions (F Mount)

2.3 Optical Interface

The amount and wavelengths of light required to capture useful images depend on the intended use. Factors include the property, speed, the object's spectral characteristics, exposure time, the light source characteristics, the specifications of the acquisition system and so on.

The exposure amount (exposure time x light amount) is the most important factor in getting desirable images. Please determine the exposure amount after studying what is most important to your system.

Keep these guidelines in mind when setting up your light source:

- LED light sources are relatively inexpensive, provide a uniform field and longer life span compared to other light sources. However, they also require a camera with excellent sensitivity.
- Halogen light sources generally provide very little blue relative to infrared light (IR).
- Fiber-optic light distribution systems generally transmit very little blue light relative to IR.
- Metal halide light sources are very bright but have a shorter life span compared to other light sources.

Generally speaking, the brighter light sources, shorter life span.

CMOS image sensors are sensitive to infrared (IR). We recommend using daylight color fluorescent lamps that have low IR emissions. If you use a halogen light source, to prevent infrared from distorting the images use an IR cutoff filter that does not transmit IR wavelengths.

2.4 Calibration with User White Pixel Correction Function

This camera is set to the optimal pixel correction with a daylight fluorescent lamp (NEC FL20SD) before shipping.

Light sources and lens shading can cause non-uniformity.

Calibrate the camera with a user white pixel correction function to cope with lens shading and non-uniform illumination by following below steps.

1) Set the lens and light source which you want to use.

2) Set NED_FFCMode to "Factory White".

3) Adjust the exposure time and gain to set the signal level to about 200 DN.

4) Execute NED_PRNUCalibration.

5) Change NED_FFCMode to "User White".

This calibration can improve the white balance and the waveform flatness of the camera signal.

See below for more details.

4.1.2 List of Camera Control Registers4.2.11 NED additional features4.8 Pixel Correction

The waveforms at the calibration processing are shown as an example of this explanation when you use 3-wavelength fluorescent lamp with this camera.

(1) Waveforms using daylight fluorescent lamp The waveform using daylight fluorescent lamp NEC FL20SD with this camera is flat after adjusting white balance at Factory.

 (2) Waveforms using 3-wavelength fluorescent lamp
 The waveforms using 3-wavelength fluorescent lamp with this camera at Factory white mode are shown below.
 The white balance is broken.

20

3 Hardware

3.1 Camera Connection

Use the camera in the following way:

- 1. Connect the camera to the PC with a LAN cable. Notes:
 - 1) Use a CAT-5e or higher grade LAN cable to connect the camera to the PC.
 - 2) In countries requiring CE certification, use a shielded cable.
 - 3) Use a Gigabit Ethernet compatible LAN port.

To add additional cameras use a NIC (Intel: Gigabit CT Desktop Adapter EXPI9301CT etc.) on the PCI or PCI-Express bus.

2. Connect the power to the camera.

Note:

Use a power cable to connect the camera power to the camera. Connect the plug end of the cable to the camera, and the open end to the power supply. In addition, a lens, lens mount, illumination, trigger controller, etc. may be required. Please choose equipment suitable for your application's requirements.

Figure 3-1-1 Connections between Camera and PC etc.

Figure 3-1-2 Example of connection for 1 PC

3.2 Input / Output Connectors and Indicator

The layout of input /output connectors and the indicator lamp are as follows.

Figure 3-2-1 Input/Output Connectors and Indicator

3.3 Power Supply Connection

6 pin round shape push-pull lock type connector for Power supply.

The pin assignment of the power supply connector is shown below.

Figure 3-3-1 Power Supply Connector (HR10G-7R-6PB)

No	NAME	Color of Cable	No	NAME	Color of Cable
1	DC12~15V	White	4	GND	Green
2	DC12~15V	Red	5	GND	Black
3	DC12~15V	NC	6	GND	NC

Table 3-3-1 Pin Assignment of Power Supply Connection

The camera requires a single power supply (DC+12 to +15V).

- When selecting a power source, choose one with the capacity to allow for in-rush current. (15W or more recommended)
- Insert the cable plug securely until it locks into position. This is to prevent the connector from coming loose during power transmission.
- Do not remove the cable while image data is being transmitted
- Compatible Cable (Compatible plug):DGPSH -10 (HIROSE : HR10A -7P 6S)
- Power supply voltage: DC+12 -15V (+/-5%)
 Consumption Current (rated): DC+12V : 610mA
- If the lamp fails to illuminate even after power is switched on, turn off power immediately. Inspect wiring. Check the voltage and capacity of the supplied power source.
- Provide a lightning surge protector on the power supply line for the camera used in the region where the possibility of thunder becomes high.
- Do not share the power supply and ground connection with the apparatus such as the inverter controlled motor units or other devices that generate noise interference to avoid the failure and malfunction of the camera. Place the camera far away from the apparatus generating noise. Do not arrange the signal cables and the power supply cable for camera adjacently.

3.4 External Trigger Connector (HR10G-10R-12PB)

- Round shape push-pull lock type.
- The pin assignment of the External Trigger connector is shown below.

Figure 3-4-1 External Trigger Connector (HR10G-10R-12PB)

This is used in External Trigger mode, or External Frame Trigger mode.

No	NAME	I/O	No	NAME	I/O
1	LineIn1-	IN	7	LineOut1+	OUT
2	LineIn1+	IN	8	LineIn2-	IN
3	LineIn3-	IN	9	LineIn2+	IN
4	LineIn3+	IN	10	Unused	NC
5	GND	GND	11	LineOut2-	OUT
6	LineOut1-	OUT	12	LineOut2+	OUT

Table 3-4-1 External Trigger Connector Pin Assignments

Notes:

- In order to ensure correct function of the external trigger, make sure to connect Pin 5 (Ground).
- 2) It is recommended to connect the external trigger cable's shield to GND on the power side.
- 3) Use a twisted pair cable, such that + and are paired.
- RS-422, LVDS and TTL are supported for input/output.
- Polarity reversal & chatter prevention functions can be used on the input.

3.4.1 RS-422 Input

When using RS-422 for input, connect a differential input via twisted pair as shown in figure 3-4-2.

For correct operation, make sure to connect GND.

With RS-422, multiple receivers can be connected to one driver.

In such a case, only terminate the furthest receiver.

On this camera, setting the Terminate setting to ON activates the terminator.

Notes:

Do not terminate multiple receivers. The signal level will decrease and the signal will not be received correctly.

Figure 3-4-2 External Trigger Input Connection Diagram (differential)

3.4.2 LVDS Input

When using LVDS for input, connect in the same way as for RS-422, as Figure 3-4-2. Again, be sure to set Terminate to ON and activate the terminator. If the terminator is not activated the signal may not be received correctly.

Notes:

The LVDS Multidrop function is not supported. Only connect 1 device per driver.

If you need to send the signal to multiple cameras, it is possible to use the camera's external trigger output for a cascade connection.

3.4.3 TTL Input

To use TTL input, connect the camera as in figure 3-4-3 below.

To avoid damaging the device, do not input a signal to the - pin.

In addition, make sure that the Terminate setting is OFF and the terminator is inactive. If the terminator is active, the signal may not be received correctly.

Figure 3-4-3 External Trigger Input Connection Diagram (TTL)

3.4.4 RS-422 Output

To use the RS-422 output, connect the camera with a differential twisted pair as shown in figure 3-4-4. For correct operation, make sure to connect GND.

Multiple receivers can be connected to 1 camera when using RS-422.

In such a case, only terminate the furthest receiver.

Notes:

Do not terminate multiple receivers. The signal level will decrease and the signal will not be received correctly.

3.4.5 LVDS Output

If the receiver requires LVDS input, it can be connected by attaching resistors to the camera outputs.

Multidrop is not supported. Connect only 1 receiver per camera.

In addition, be sure to check that the receiver side must be terminated.

If not, correct signals may not be received.

Figure 3-4-5 External Trigger Output Connection Diagram (LVDS)

3.4.6 TTL Output

To use TTL output, connect the camera output as shown in figure 3-4-6.

The Lo level output is 0V, the Hi level output is 3.3V.

To avoid damaging the device, do not connect the - pin.

Figure 3-4-6 External Trigger Output Connection Diagram (TTL)

3.4.7 Relation of External Trigger Input and Output

The external trigger output uses the external trigger input driver as an intermediary as shown in figure 3-4-7. Therefore it is possible to switch the output ON/OFF by use of an enable resistor. For settings, see "4.2.6.4 Setting Line Source".

Figure 3-4-7 Relation of External Trigger Input and Output

3.5 RJ-45 Connector

The camera uses an RJ-45 connector complying with the Gigabit Ethernet standard (1000BASE-T). It can be connected to the LAN connector of your PC via a LAN cable (CAT-5e or above). For applications where there is a lot of vibration or movement, a screw-lock cable can be used.

Figure 3-5-1 RJ-45 connector

No.	Name
1	TRP1+
2	TRP1-
3	TRP2+
4	TRP2-
5	TRP3+
6	TRP3-
7	TRP4+
8	TRP4-

3.6 LED indicating camera status

The LED is used to indicate power present and to the camera status.

Camera Status by LED Indicator	LAN is connected	LAN is not connected
Camera Power Supply is off	off (LED indication)	off (LED indication)
Camera Booting Up (Power On)	Lights orange	Lights orange
Disconnected cable	-	Lights red
Device Discovery	Blinks orange	-
Stand-by transmitting image packets	Lights green	-
Transmitting image packets	Blinks green	-

Table 3-6-1 LED indication

4 Camera Control

The camera supports the industrial camera control API Gen<I>Cam, and so camera settings can be easily changed from your application. The camera control registers are listed below. For instructions on how to change the settings, see the manual for your viewer software.

4.1 Flow of Camera Control

4.1.1 GenICam overview

- The camera control register information is saved inside the camera (XML file).
- The frame grabber board reads the XML file during Discovery, and acquires the register information.
- Camera control is enabled after Discovery.
 Check your frame grabber's manual for how to perform device discovery.

4.1.2 List of Camera Control Registers

This camera supports GenICam SFNC 2.3 and the camera setting of the features shown in the table below can be controlled by software attached to the frame grabber board.

Control Item	RW	VAL <factory settings=""></factory>	Description	
	Device Control			
			User define ASCII code	
DeviceUserID	RW		ASCII code is up to 15 characters	
		<0X00>	The last of ASCII code is "NULL(0x00)"	
DeviceTemperature		Mainboard	No pood of Sotting change	
Selector	Rvv	Mainboard		
DeviceTemperature	R		DeviceTemperature (°C)	
	Image Format Control			
Width		8~4096	Number of pixels in a line.	
	RVV	<4096>	Must be a multiple of 4.	
Lloight		16~4096	Number of lines in a frame	
Height RV	RVV	<512>	Number of lines in a frame.	

Table 4-1-1 List of Car	nera Control Registers
-------------------------	------------------------

		0~1088	X Offset Pixel No.
OffsetX	RW	-0>	Number of pixels in a line.
			Must be a multiple of 4.
Binning Horizontal Mode	R\//	Sum / Average	Addition/ Addition Average
Diming honzontar Mode	1	<sum></sum>	
Dinning Llorizontol	D\//	1 / 2	1(OFF) / 2 pixels
Dimining Honzontai	1	<1>	
Binning Vertical Mode	RW	Sum / Average	Addition / Addition Average
		<sum></sum>	
Binning Vertical	D\\/	1 / 2	1(OFF) / 2 pixels
Binning ventical		<1>	
		True /	True : Reverse
ReverseX	RW	False	False : Forward
		<false></false>	
PixelFormat	RW	RGB8Packed	No need of Setting change
		Off /	
		GreyHorizontalRamp /	
TestPattern	RW	NED_GreyDiagonalRamp /	Test Pattern Output
		Color Bar	
		<off></off>	
		Acquisition Control	
Acquisition in Pata	RW	300 ~ 30030	Hz(upit)
AcquisitionLinerate		<2640>	Tiz(unit)
		FrameActive /	FrameActive : Enabling frame
TriggorSoloctor	RW	ExposureStart /	ExposureStart : Start (Each line)
InggerSelector		DummyFrameOutput	DummyFrameOutput: Dummy Output
		<exposurestart></exposurestart>	
		Off /	Off : Disabling External trigger
TriggerMode	RW	On	On : Enabling External trigger
		<off></off>	
		NoConnect/	NoConnect : No connection
		Software/	Software : Software Torigger
		Encorder1/	Encorder1 : Encoder selection
TriggerSource	RW	LineIn1/	LineIn1 : External trigger
		LineIn2/	LineIn2 : External trigger
		LineIn3	LineIn3 : External trigger
		<noconnect></noconnect>	

		Rising Edge/	Rising Edge : Rising Edge
TriggerActivation		Falling Edge/	Falling Edge : Falling Edge
		Any Edge/	Any Edge : Rising & Falling Edge
	RW	Level High/	Level High : "H" level activation
		Level Low	Level Low : "L" level activation
		< Rising Edge>	
NED_DummyFrame	RW	0.0 ~ 600000000.0	
OutputTimeout		<0.0>	µsec.(unit)
		Timed /	Timed : Value of ExposureTime
Evene ve Mada		Trigger Width	TriggerWidth : "H" time of External
Exposureiviode	RW		trigger
		<timed></timed>	
EvenoureTime		2.0~3331.0	
Exposure nime	RW	<376.4>	0.1 µsec7 step
		Analog Control	
		x100~x1000	x1 / x2 / x3 / x4 / x5 / x6 / x8 / x10
NED_AnalogGain	RW	<x100></x100>	
	RW	All /	All : Red,Green,Blue
		Red /	Red : Red
Gain Selector		Green /	Green : Green
		Blue	Blue : Blue
		<all></all>	
Cain	RW	1.000000~2.000000	x1~x2
Gain		<1.000000>	0.001957 / step
		All /	All : Red,Green,Blue
	RW	Red /	Red : Red
Black Level Selector		Green /	Green : Green
		Blue	Blue : Blue
		<all></all>	
Plack Loval		-80 ~ 80	-8080
DIACK Level	RVV	<0>	1.000000 / step
Balance White Auto RV		Off /	
	RW	Once /	Controls the mode for automatic white
		Reset	balancing between the color channels.
		<off></off>	
Gamma	D\//	0.250~4.000	0.250~4.000
Gamma	KVV	<1.000>	0.001000 / step

Color Transformation Control			
Color Transformation		True /	True : On
	RW	False	False : Off
Enable		<false></false>	
		Gain 00 /	
		Gain 01 /	
		Gain 02 /	
		Gain 10 /	
		Gain 11 /	
Color Transformation	514	Gain 12 /	Transformation matrix to access in the
Value Selector	RW	Gain 20 /	
		Gain 21 /	selected Color Transformation module.
		Gain 22 /	
		Offset 0 /	
		Offset 1 /	
		Offset 2	
Color Transformation		RW Gain ** : -3.0 ~ 3.0 Offset * : -512 ~ 512	Represents the value of the selected
	RW		Gain factor or Offset inside the
value			Transformation matrix.
		Digital IO Control	
		LineIn1/ LineIn2/ LineIn3/	Input : LineIn1 / LineIn2 / LineIn3
Line Selector	RW	LineOut1 / LineOut2	Output : LineOut1 / LineOut2
		<linein1></linein1>	
Line Mode	R	Input/Output	No need of Setting change
l ine Inverter	R\//	True / False	True : Input Invert ON
Line inventer		<false></false>	False : Input Invert Off
Line Statue	R	True / False	No pood of Sotting change
Line Status		<false></false>	No need of Setting change
		Off /	
		Acquisition Active /	Colorto which internal convisition or I/O
Line Source	RW	Frame Active /	Selects which internal acquisition of I/O
		Exposure Active /	source signal to output on the selected
		Encoder 1 /	Line. LineMode must be Output.
		Lineln1 / Lineln2 / Lineln3	
		TTL/	TTL : TTL Output
		RS422NotTerminate /	RS422NotTerminate : RS422
Line Format	RW		(without terminal resistance)
		RS422Terminate	RS422Terminate : RS422

			(with terminal resistance)
		0 ~ 100000	
NED_LineMaskTimeR	RW	0.00000	0 ~ 100000 µsec.
		<0>	
NED_LineMaskTimeF	RW	0~100000	0 ~ 100000 µsec.
		<0>	
	r	Encoder Control	
Encoder Selector	R	Encorder1	No need of Setting change
Encoder Source A	RW	Off / LineIn1 /	Encoder signal (A-phase)
	1	Lineln2 / Lineln3	
Encodor Source P	D\//	Off / LineIn1 /	Encoder eignel (P. phase)
		LineIn2 / LineIn3	
		Four Phase /	Four Phase : Combination of
			A & B phases One cycle of 4-state
			(with filtering)
Encoder Mode	RW	High Resolution	High Resolution : One cycle of
			1-state(without filtering)
		< Four Phase >	
		1~200	One pulse by Pulse number input
Encoder Divider	RW	<1>	
		Off / Position Up /	
		Position Down /	
	RW	Direction Up /	Signal output setting mode for
Encoder Output Mode		Direction Down /	status of moving object.
		Motion	
		<0ff>	
Encoder Status	R	Encoder Static	No need of Setting change
Encoder Timeout	RW	<0.000	
		<0:000> 	
Encoder Reset Source		OII /	
		Acquision End /	
	RW	Frame Start /	Selects the signals that will be the
		Frame End /	source to reset the Encoder.
		Exposure Start /	
		Exposure End /	
		LineIn1 /	

		LineIn2 /	
		LineIn3	
		<off></off>	
		Rising Edge /	
		Falling Edge /	
Encoder Reset		Any Edge /	Selects the Activation mode of the
Activation	RW	Level High /	Encoder Reset Source signal.
		Level Low	
		< Rising Edge >	
E b . D t	14/		Software reset of encoder
Encoder Reset	vv		(Independent of ncoderResetSource)
		0~999999	
Encoder Value	RW	<0>	Reads and writes Encoder counting
			Reads the value of the of the position
Encodor Value At Pocot	D	0 ~ 4294967295	counter of the selected Encoder when it
Encouer value Al Resel	ĸ	<0>	was reset by a signal or by an explicit
			EncoderReset command.
		User Set Control	
		Default /	Default : factory settings
User Set Selector	RW	UserSet1	UserSet1 : user settings 1
		< UserSet1>	
			Loads the User Set specified by
User Set Load	W		UserSetSelector to the device and
			makes it active.
Lloor Sot Sovo	14/		Saves Current camera set values by
User Set Save	vv		UserSetSelector in the memory.
User Set Default	RW	UserSet1	No need of Setting change
Transport Layer Control			
Gev Current IP		Truce / Ender	True ON
Configration Persistent	RW	True / Faise	
IP		<ralse></ralse>	False : Off
			This GigE Vision specific feature
			corresponds to
			DeviceStreamChannelPacketSize and
Gev SCPS Packet Size	RW	512 ~ 9152	should be kept in sync with it.
			It specifies the stream packet size, in
			bytes, to send on the selected channel
			for a GVSP transmitter or specifies the
			maximum packet size supported by a
---------------------	-----	------------------------------	---------------------------------------
			GVSP receiver.
		0 4204067205	Controls the delay (in GEV timestamp
Gev SCPD	RW	4294907293	counter unit) to insert between each
		<00>	packet for this stream channel.
		NED additional feature	25
		Disable /	Correction OFF /
		Factory white /	Factory black correction+
			Factory white correction /
		User white /	Factory black correction+
			User arbitrary white correction /
NED_FFCM0de	RVV	User black+Factory white /	User arbitrary black correction+
			Factory white correction /
		User black+User white	User arbitrary black correction+
			User arbitrary white correction
		<factory white=""></factory>	
		1~1023	Target value of correction level
NED_PRNUTarget RW		<800>	(10bit DN)
			Acquiring the data of user arbitrary
NED_PRNUCalibration	W		white correction and saving it in the
			memory
			Acquiring the data of user arbitrary
NED_FPNCalibration	W		black correction and saving it in the
		memory	

4.2 Details on register system

4.2.1 Category

The following eleven(11) categories are available as the camera control register. When you select the camera type number from the list of "Features name", these categories are shown.

Categories

- 1. Device Control
- 2. Image Format Control
- 3. Acquisition Control
- 4. Analog Control
- 5. Color Transformation Control
- 6. Digital IO Control
- 7. Encoder Control
- 8. User Set Control
- 9. Transport Layer Control
- 10. NED additional features
- 11.NED factory only

(Reference) (for Device temperature) (for Imaging) (for Exposure, Trigger) (for Gain, Offset) (for Color Transformation) (for Color Transformation) (for Line selector) (for Line selector) (for Encoder) (for Memory Loading and saving) (for GIG-E IF) (for Pixel Correction) (No use)

NED RCDL4K8GE (M_DEV0) Feature	es	
Guru 🔻		Polling
Feature Name	Value	
Device Control		
🗉 Image Format Control		
Acquisition Control		
Analog Control		
Color Transformation Control		
🗉 Digital IO Control		
Encoder Control		
User Set Control		
🗄 Transport Layer Control		
NED additional features		
NED factory only		

Figure 4-2-1 Features

4.2.2 Device Control

4.2.2.1 Displaying Temperature of Camera

Displays the temperature of camera inside.

- Register name Device Temperature
- Displaying Value
 (°C)

Feature Name	Value
Device Control	
Device Scan Type	Linescan
Device Vendor Name	NED
Device Model Name	RCDL4K8GE
Device Manufacturer Info	color line sensor
Device Version	0.96_0x501c
Device Serial Number	00C0002
Device User ID	
NED_DeviceFirmwareStartupMode	Golden (Factory default)
Device SFNC Version Major	2
Device SFNC Version Minor	3
Device SFNC Version Sub Minor	0
Device Manifest Entry Selec	0
Device TL Type	GigE Vision
Device TL Version Major	1
Device TL Version Minor	2
Device Link Selector	0
Device Character Set	UTF 8
Device Registers Endianness	Big
Device Temperature Selector	Mainboard 👻
Device Temperature	47.300
Timestamp Reset	Execute()
Timestamp Latch	Execute()
Timestamp Latch Value	0
Image Format Control	

Figure 4-2-2-1 Device Temperature

4.2.3 Image Format Control

4.2.3.1 OffsetX and Width Settings

By using the 2 settings OffsetX and Width, a specific region only can be read out from the camera. The range of values is as follows:

• OffsetX : 0 ~ 4088

• Width : 8 ~ 4096

Height	512
Offset X	0
Offset Y	0

Height Max	4096	
Width	4096	·
Height	512	

Figure 4-2-3-1-2 Width

Notes:

OffsetX and Width can both only be set in multiples of 4.

e.g. Offset X = 5 is not possible.

In addition, if the total of OffsetX and Width exceeds 4096, the input will not be accepted.

First, reduce one value, then increase the other.

- (e.g. 1) To go from OffsetX = 0, Width = 4096 to OffsetX = 548, Width = 3000. First, set Width to 3000, then set OffsetX to 548.
- (e.g. 2) To go from OffsetX = 548, Width = 3000 to OffsetX = 0, Width = 4096. First, set OffsetX to 0, then set Width to 4096.

As shown below, setting OffsetX = a, Width = b results in the region a+1-a+b being specified.

(e.g.) To specify pixel 513~ pixel 1536, set Offset X = 512, Width = 1024.

Figure 4-2-3-1-3 Valid Pixel Region

4.2.3.2 Height Setting

The Height parameter is used to set the number of lines in 1 frame.

The range of values is as follows:

 Height : 16~409 	96	
Width	4096	
Height	512	
Offset X	0	

Figure 4-2-3-2-1 Height

Figure 4-2-3-2-2 Area of 1 Frame

Notes:

The time for 1 frame can be calculated as follows:

1 Frame period (us)=1 Line Scan Period (us) x Height

Depending on the scan period and the height setting, it is possible that your application may time out.

In such a case, either change the above settings or the timeout period in your application.

4.2.3.3 Setting Pixel Horizontal Binning Mode

Sets the horizontal pixel binning mode for the camera output signal.

- Register name Binning Horizontal Mode
- VAL Sum (Addition) / Average (Addition average)

(Example)

Binning Horizontal Mode : Sum (Addition)

Binning Horizontal Mode	Sum 👻
Binning Horizontal	Sum
Binning Vertical Mode	Average
Binning Vertical	1

Figure 4-2-3-3 Binning Horizontal Mode

4.2.3.4 Setting Horizontal Pixel Binning

Sets the number of horizontal pixel binning of the output signal of the camera.

- Register name
 Binning Horizontal
- VAL 1(1 pixel, OFF of horizontal pixel binning) / 2(2 pixels)

(Example)

Binning Horizontal : 1(OFF)

Binning Horizontal Mode	Sum
Binning Horizontal	1
Binning Vertical Mode	Sum

Figure 4-2-3-4 Binning Horizontal

4.2.3.5 Setting Pixel Vertical Binning Mode

Sets the Vertical pixel binning mode for the camera output signal.

- Register name Binning Vertical Mode
- VAL Sum (Addition) / Average (Addition average)

(Example)

Binning Horizontal Mode : Sum (Addition)

Binning Horizontal	1
Binning Vertical Mode	Sum 👻
Binning Vertical	Sum
Reverse X	Average
Pixel Format	RGB8Packed

Figure 4-2-3-5 Binning Vertical Mode

4.2.3.6 Setting Vertical Pixel Binning

Sets the number of Vertical pixel binning of the output signal of the camera.

- Register name Binning Vertical
- VAL 1(1 pixel, OFF of Vertical pixel binning) / 2(2 pixels)

(Example)

Binning Horizontal : 1(OFF)

Binning Vertical Mode	Sum
Binning Vertical	1
Reverse X	

Figure 4-2-3-6 Binning Vertical

4.2.3.7 Scan Direction

Switches scanning direction.

- Register name ReverseX
- VAL clear the check box(Forward) / check box (Reverse)

(Example)

Reverse : check box (Reverse)

Binning Vertical	1
Reverse X	
Pixel Format	RGB8Packed

Figure 4-2-3-7 Scan Direction

4.2.3.8 Pixel Format Setting

Set the pixel format.

Only RGB8Packed can be selected.

- Register name Pixel Format
- VAL RGB8Packed

Reverse X	
Pixel Format	RGB8Packed 🗸
Test Pattern	RGB8Packed
Acquisition Control	

Figure 4-2-3-8 Pixel Format

4.2.3.9 Test Pattern

The test pattern function allows you to check that data is being transferred correctly from the camera.

- Register name **Test Pattern**
- VAL

Off / Grey Horizontal Ramp /

NED_Grey Diagonal Ramp / Color Bar

Pixel Format	RGB8Packed
Test Pattern	Off 🗸
Acquisition Control	Off
Analog Control	Grey Horizontal Ramp
Color Transformation Control	NED_Grey Diagonal Ramp Color Bar
Digital IO Control	

Figure 4-2-3-9-1 Test Pattern

Figure 4-2-3-9-2 GreyHorizontalRamp

Figure 4-2-3-9-3 GreyHorizontalRamp

It increases in increments of 1DN to 255DN in order from the first pixel 0DN. This pattern is repeatedly output.

Figure 4-2-3-9-5 NED_GreyDiagonalRamp

The value increases by 1DN each pixel, up to 255DN from 0DN in both X-direction (horizontal direction) and Y-direction (vertical direction) in 8-bit mode, the pattern repeats.

When ColorBar is selected, the below pattern is output.

NED

Figure 4-2-3-9-7 ColorBar

512 pixels in order from the first pixel,Black R:0,G:0,B:0 \rightarrow White R:255,G:255,B:255 \rightarrow Yellow R:255,G:255,B:0 \rightarrow Light blue R:0,G:255,B: 255 \rightarrow Green R:0,G:255,B:0 \rightarrow Pink R:255,G:0,B:255 \rightarrow Red R:255,G:0,B:0 \rightarrow Blue R:0,G:0, B:255

4.2.4 Acquisition Control

4.2.4.1 Setting Line Rate

Sets the Line Rate.

Register name Acquisition Line Rate	e
-------------------------------------	---

• VAL 300.000 ~ 30030.000 (*1) (Hz)

(Example) (When 2640Hz is set as the line rate)

Acquisition Line Rate : 2640

Acquisition Stop	Execute()	
Acquisition Line Rate	2640.000	
Acquisition Line Rate Enable	1	

Figure 4-2-4-1 Acquisition Line Rate

(*1) The maximum acquisition line rate at the time of the use of 4K pixels becomes 8kHz(RGB8Packed) (but, it may become lower than 8kHz depending on the processing time of PC)

(*2) The reciprocal of the line rate (1/Acquisition Line Rate) is set in increments of 0.100μs. When a value of (1/Acquisition Line Rate) is not divisible in 100ns, the real set value is different as follows.

(Example)

- When Acquisition Line Rate is set to 7000Hz, the real set value becomes 7002Hz.
- When Acquisition Line Rate is set to 7900Hz, the real set value becomes 7905Hz.

The value of Exposure Time may be changed automatically when the value of Acquisition Line Rate is too large.

The values are roughly set according to the following formula.

Exposure Time <= (1 / Acquisition Line Rate) - 2.3 μs

4.2.4.2 Setting Trigger Selector

Sets the Trigger.

- Register name Trigger Selector
 - Frame Active,
 - Exposure Start or

DummyFrameOutput

(Example)

VAL

Trigger Selector : Exposure Start

Acquisition Line Rate Enable	\checkmark
Trigger Selector	Exposure Start 🔹
Trigger Mode	Frame Active
Trigger Software	Exposure Start
Trigger Source	DummyFrameOutput

Figure 4-2-4-2 Trigger Selector

4.2.4.3 Setting Permission for using External Trigger

Sets the "Trigger Mode" of Register name to get permission for using the External trigger. Select "On" on the "Trigger Mode" if the External trigger is used.

Register name Trigger Mode

VAL Off / On (Disable/Enable)

(Example)

Trigger Mode: On

Trigger Selector	Exposure Start
Trigger Mode	On 🗸
Trigger Software	Off
Trigger Source	On

Figure 4-2-4-3 Trigger Mode

* Make sure that the trigger packet is supplied from the frame grabber board to the camera before the "Trigger Mode" is changed from "Off(Disable) to "On(Enable)" to get permission for using the External trigger.

See 4.3 Examples of External trigger setting.

4.2.4.4 Setting Trigger signal

Sets the "Trigger Source" of Register name when the "Trigger Mode" is set to "On" (Enable).

- Register name Trigger Source
- VAL

NoConnect (No connection) Software (Software Torigger) Encoder 1 (Encoder selection) LineIn1 (External trigger) LineIn2 (External trigger) LineIn3 (External trigger)

(Example)

Trigger Sourse : Encoder 1

Trigger Source	Encoder 1 🗸
Trigger Activation	NoConnect
Trigger Delay	Software
NED_DummyFrameOutput	Encoder 1
Exposure Mode	LineIn1 LineIn2
Exposure Time	LineIn3

Figure 4-2-4-4 Trigger Source

4.2.4.5 Setting Exposure Mode

Sets the "Exposure Mode" of Register name when the "Trigger Mode" is set to "On" (Enable).

- Register name Exposure Mode
- VAL Timed (The set value of the "Exposure Time" is used as the exposure time)

Trigger Width (The "H" time of "Trigger pulse" of the "External Start" is used as the exposure time)

(Example)

Exposure Mode : Timed

NED_DummyFrameOutputTim	0.000
Exposure Mode	Timed 🗸
Exposure Time	Timed
Analog Control	Trigger Width

Figure 4-2-4-5 Exposure Mode

4.2.4.6 Setting Exposure Time

Sets the value of the exposure time.

The setting is enable;

when "Off" on the "Trigger Mode" is set, or

when "On" on the "Triger Mode" and "Timed" on the "Exposure Mode" are set.

Register name Exposure Time

• VAL 2.000~3331.000 (0.1100µs step)

(Example)

Exposure Time : 376.400

Exposure Mode	Timed	
Exposure Time	376.400	
Analog Control		

Figure 4-2-4-6 Exposure Time

* The value of the Acquisition Line Rate" may be changed automatically when the value of the "Exposure Time" is too large.

The values are roughly set according to the following formula.

Acquisition Line Rate <= 1 / (Exposure Time + 2.3) μs

4.2.5 Analog Control

4.2.5.1 Setting Analog gain

The camera can adjust the analog gain (x1 to x10 in 8 steps).

 Register name 	NED_AnalogGain
-----------------------------------	----------------

• VAL X 1.00 ~ X 10.00

(Example)

Analog Gain : x 1.00 (Setting analog gain (x1.00))

Analog Control	
NED_AnalogGain	x 1.00(0.0dB) -
Gain Selector	x 1.00(0.0dB)
Black Level Selector	x 2.00(5.0dB)
Balance White Auto	x 3.00(9.5dB)
0	x 4.00(12.0dB)
Gamma	x 5.00(14.0dB)
Color Transformation Control	x 6.00(15.6dB)
Digital IO Control	x 8.00(18.1dB)
Encoder Control	x10.00(20.0dB)

Figure 4-2-5-1 NED_AnalogGain

4.2.5.2 Gain type selection

Select a color to set the digital gain of the camera.

 Register name 	Gain Selector
-----------------------------------	---------------

VAL All / Red / Green / Blue

(Example)

Gain elector : All

NED_AnalogGain	× 1.00(0.0dB)
Gain Selector	All
Gain	All
 Black Level Selector 	Red
Balance White Auto	Green Blue
Gamma	1.000

Figure 4-2-5-2 Gain Selector

4.2.5.3 Setting Digital gain

The camera can adjust the digital gain(x1 to x2 in 512 steps).

Register name Gain

• VAL 1.000~2.000 (0.001957step)

(Example)

Gain	:	1.327
Jain	•	1.027

Gain Selector	All	
Gain	1.327	
Black Level Selector	Blue	

Figure 4-2-5-3 Gain

4.2.5.4 Offset type selection

Select a color to set the offset of the camera.

- Register name
 Black Level Selector
- VAL All / Red / Green / Blue

(Example)

Gain elector : All

Gain Selector	All
Black Level Selector	All
Black Level	All
Balance White Auto	Red
Gamma	Green
Color Transformation Control	blac

Figure 4-2-5-4 Black Level Selector

4.2.5.5 Setting Digital Offset

The offset can be adjusted. It is possible to set it in the adjustable range of-40~40(DN).

Register name	Black Level
---------------	-------------

• VAL -80 ~ 80 (1.000000 step)

(Example)

BlackLevel: 10

Black Level Selector	All	
Black Level	10.000	·
Balance White Auto	Off	

Figure 4-2-5-5 Black Level

4.2.5.6 Setting Balance White Auto

Sets the Balance White Auto.

 Register name 	Balance White Auto
-----------------------------------	--------------------

VAL Off / Once / Reset

(Example)

Balance White Auto : Once

Black Level Selector	Blue
Balance White Auto	Once 👻
Gamma	Off
Color Transformation Co	Once
Digital IO Control	Reset

Figure 4-2-5-6 Balance White Auto

4.2.5.7 Setting Gamma correction

Sets the gamma correction value.

Register name	gamma
---------------	-------

• VAL 0.250 ~ 4.000

(Example)

gamma : 1.000

Balance White Auto	Off
Gamma	1.000
Color Transformation Control	

Figure 4-2-5-7 Gamma

See 4.9 Gamma Correction setting.

53

4.2.6 Color Transformation Control

4.2.6.1 Color Transformation settings

Set whether Color Transformation is enabled or disabled.

Color Transformation is a function that converts an RGB value into another RGB value using the following formula.

When using Color Transformation, turn it on (On).

 Register name 	Color Transfo	ormation Enable	
• VAL	False / True	(Disable/Enable)	
(Example)			
Color Transformation Enable : False			
🖃 Color Transformation	on Control		

Color Transformation Control	
Color Transformation Enable	
E Color Transformation Value Selector	Gain 00

Figure 4-2-6-1 Color Transformation Enable

4.2.6.2 Select Color Transformation item

Select the setting item of Color Transformation Value.

Select 9 types from Gain 00 to Gain 22 and 3 types from Offset 0 to Offset 2.

- Register name Color Transformation Value Selector
- VAL Gain 00,Gain 01,Gain 02,Gain 10,Gain 11,Gain 12,Gain 20, Gain 21,Gain 22,Offset 0,Offset 1,Offset 2

(Example)

Color Transformation Value Selector : Gain 01

Color Transformation Enable	
Color Transformation Value Selector	Gain 01 👻
Color Transformation Value	Gain 00
Digital IO Control	Gain 01
Encoder Control	Gain 02
	Gain 10
User Set Control	Gain 11
Transport Layer Control	Gain 12
NED additional features	Gain 20
NED factory only	Gain 21
INED TACLOFY ONLY	Gain 22
	Offset 0
	Offset 1
	Offset 2

Figure 4-2-6-2 Color Transformation Value Selector

4.2.6.3 Setting Color Transformation Value

Set the Color Transformation Value.

Enter values for Gain 00 to Gain 22 and Offset 0 to Offset 2.

- Register name Color Transformation Value
- VAL Gain ** : -3.0 ~ +3.0
 - Offset * : -512 ~ +512

(Example)

Color Transformation Value : 1.000

Color Transformation Value Selector	Gain 01	
Color Transformation Value	1.000	
Digital IO Control		

Figure 4-2-6-3 Color Transformation Value

4.2.7 Digital IO Control

4.2.7.1 Setting I/O signal

Sets I/O signal.

- Register name
 Line Selector
- VAL LineIn1 / LineIn2 / LineIn3(input) /

LineOut1 / LineOut2(output)

(Example)

Line Selector : LineIn1

Line Selector	LineIn1 👻
Line Mode	LineIn1
Line Inverter	LineIn2
Line Status	LineIn3
Line Source	LineOut2
Line Format	TTL

Figure 4-2-7-1 Line Selector

* See Table 3-4-1 External Trigger Connector Pin Assignments for the relation with VAL (LineIn/ LineOut) and the corresponding pins.

4.2.7.2 Setting Line Mode

The "Line Mode" can be set automatically when the "Line Selector" is set.

When "LineIn" of "Line Selector" is set, "Input" appears.

When "LineOut" of "Line Selector" is set, "Output" appears.

Line Selector	LineIn1
Line Mode	Input
Line Inverter	

Figure 4-2-7-2 Line Mode

4.2.7.3 Setting Input Signal Polarity Reversal

Sets Input signal polarity reversal.

- Register name
 Line Inverter
- VAL False(Uncheck the box)

(Disabling Input signal polarity reversal)

True(Check the box)

(Enabling Input signal polarity reversal)

(Example) (Enabling Input signal polarity reversal)

Line Inverter : On	
Line Mode	Input
Line Inverter	
Line Status	

Figure 4-2-7-3 Line Inverter

4.2.7.4 Setting Line Source

Sets Line Source.

 Register name 	Line Source
• VAL	Off / Acquisition Active / Frame Active /
	Exposure Active/Encorder1 /
	LineIn1/LineIn2/LineIn3(input) /
	LineOut1/LineOut2(output)

(Example)

Line Source : LineIn1

Digital IO Control	
Line Selector	LineOut1
Line Mode	Output
Line Inverter	
Line Status	
Line Source	LineIn1 🗸
Line Format	Off
NED_LineMaskTimeR	Acquisition Active
NED_LineMaskTimeR NED_LineMaskTimeF	Acquisition Active Frame Active
NED_LineMaskTimeR NED_LineMaskTimeF Encoder Control	Acquisition Active Frame Active Exposure Active Encoder 1
NED_LineMaskTimeR NED_LineMaskTimeF Encoder Control User Set Control	Acquisition Active Frame Active Exposure Active Encoder 1 LineIn1
NED_LineMaskTimeR NED_LineMaskTimeF Encoder Control User Set Control Transport Layer Control	Acquisition Active Frame Active Exposure Active Encoder 1 LineIn1 LineIn2

Figure 4-2-7-4 Line Source

4.2.7.5 Setting I/O Signal Format

Sets I/O signal format.

- Register name
 Line Format
- VAL TTL / RS422NotTerminate / RS422Terminate / LVDS

(Example)

Line Format : TTL

Digital IO Control		
Line Selector	LineIn1	
Line Mode	Input	
Line Inverter		
Line Status	<i>√</i>	
Line Source		
Line Format	TTL	
NED_LineMaskTimeR	TTL	
NED_LineMaskTimeF	RS 422 Not Terminate	
Encoder Control	RS 422 Terminate	
User Set Control		

Figure 4-2-7-5 Line Format

* See Section 3.4.1 to 3.4.7 for Input and Output of RS422, LVDS and TTL.

4.2.7.6 Setting External Line Trigger Chattering Prevention

This register enables the feature to prevent chattering or other unexpected variations in the signal.

Figure 4-2-7-6 External Line Trigger Input Mask Effect

①NED_LineMaskTimeR : The time during which changes in the signal rising edge are invalid

- ②NED_LineMaskTimeF : The time during which changes in the signal falling edged are invalid Using this function you can control the generation of unwanted frames due to unexpected variations in the signal.
- ③If you set NED_LineMaskTimeR to too large a value, valid trigger changes may go undetected and frames will not be generated, so set the value as small as possible.
- (4)If you set NED_LineMaskTimeF to too large a value, valid trigger changes may go undetected and unwanted frames will be generated, so set the value as small as possible.

4.2.8 Encoder Control

4.2.8.1 Setting Encoder Control

Sets Encoder control.

Only "Encoder1" can be selected.

- Register name Encoder Selector
- VAL Encoder1

Encoder Control	
Encoder Selector	Encoder 1 🗸 🗸
User Set Control	Encoder 1
Transport Layer Control	

Figure 4-2-8-1 Encoder Selector

4.2.8.2 Setting Input Signal for Encoder Source A

Sets Input signal for Encoder Source A.

Register name	Encoder Source A
Register nume	

VAL off / LineIn1 / LineIn2 / LineIn3

(Example) (when "LineIn1" is set on "Encoder Source A")

Line Format : LineIn1

Encoder Selector	Encoder 1
Encoder Source A	LineIn1 👻
Encoder Source B	Off
Encoder Mode	LineIn1
Encoder Divider	LineIn2
Encoder Output Mode	UIT

Figure	4-2-8-2	Encoder	Source	Δ
rigule	4-2-0-2	LIICUUEI	Source	A

4.2.8.3 Setting Input Signal for Encoder Source B

Sets Input signal for Encoder Source B.

- Register name Encoder Source B
- VAL Off / LineIn1 / LineIn2 / LineIn3

(Example) (when "LineIn2" is set on "Encoder Source B")

Line Format : LineIn2

1		
	Encoder Source A	LineIn1
	Encoder Source B	LineIn2 🗸
	Encoder Mode	Off
	Encoder Divider	LineIn1
Encoder Output Mode Encoder Status	LineIn2	
	LineIn3 Encoder Static	
- 1		

4.2.8.4 Setting Encoder Mode

Selects the method to decode the encoder pulse.

This can be used for trigger signals.

- Register name Encoder Mode
- VAL

Four Phase(The combination by rising and falling edges on pulses of Phase A and Phase B makes four states.
Four states are counted as one cycle of pulse of "Four-phase". This can filter the unnecessary signals such

as the chattering signals by noise)

High Resolution(Any changes by rising and falling edges on pulses of Phase A or Phase B are counted as one cycle of pulse of "High Resolution". This may not work as noise filter for the chattering signals)

(Example)

Encoder Mode: Four Phase (when "Four Phase " is set on "Encoder Mode")

Encoder Source B	LineIn2
Encoder Mode	Four Phase 🗸
Encoder Divider	Four Phase
Encoder Output Mode	High Resolution

Figure 4-2-8-4-1 Encoder Mode

Figure 4-2-8-4-2 Encoder Mode

4.2.8.5 Setting Encoder Divider

Sets numbers of Encoder Divider for outputting the pulse when the encoder input of the specified number is acquired.

 Register name 	Encoder Divider		
• VAL	1~200		
(Example) (when "10" is set on "Encoder Divider")			
Encoder Divider : 10			
Encoder Mode		Four Phase	
Encoder Divider		10	-
Encoder Output Mod	de	Off	

Figure 4-2-8-5 Encoder Divider

4.2.8.6 Setting Encoder Output Mode

Sets the Encoder Output Mode to output the pulse.

- Register name Encoder Output Mode
- VAL Off(Output no pulse)

Position Up(Pulse output when new position in normal

rotation direction is detected)

Position Down(Pulse output the pulse when new position in reverse rotation direction is detected)

Direction Up(Pulse output in normal rotation direction)

Direction Down(Pulse output in reverse rotation direction)

Motion(Pulse output in normal and reverse rotation directions)

(Example) (when "Position Up " is set on "Encoder Output Mode")

Encoder Output Mode : Position Up

Encoder Divider	1
Encoder Output Mode	Position Up 👻
Encoder Status	Off
Encoder Timeout	Position Up
Encoder Reset Source	Position Down Direction Un
Encoder Reset Activation	Direction Down
Encoder Reset	Motion

4.2.8.7 Setting Encoder Status

Reads the Encoder status.

Register name Encoder Status

VAL Encoder Up(Encoder counter increasing)

Encoder Down(Encoder counter decreasing)

Encoder Idle(Encoder counter stopping)

Static(No operation in time of Encoder Timeout)

4.2.8.8 Setting Time of Encoder Timeout

Sets the time of Encoder Timeout.

The status becomes "Encoder Idle" if the Encoder counter does not change during this time.

Register name Encoder Timeout
 VAL 0~6000000

	Encoder Time	out : 10	
(Example)	(when "10µsec" is set on "E	Encoder Timeout")

Encoder Status	Encoder Static	
Encoder Timeout	10.000	
Encoder Reset Source	Off	

4.2.8.9 Setting Encoder Reset Signal

Sets the Encoder Reset signal.

- Register name Encoder Reset Source
- VAL Off(No Reset Source) / Acquisition Start / Acquisition End / Frame Start / Frame End / Exposure Start / Exposure End / LineIn1 / LineIn2 / LineIn3

(Example) (when "Frame End" is set on "Encoder Reset Source")

Encoder Reset Source : Frame End

Encoder Timeout	10.000
Encoder Reset Source	Frame End 🗸
Encoder Reset Activation	Off
Encoder Reset	Acquisition Start
Encoder Value	Acquisition End
Encoder Value At Reset	Frame End
User Set Control	Exposure Start
Transport Layer Control	Exposure End
NED additional features	LineIn1
NED factory only	LineIn3

Figure 4-2-8-9 Encoder Reset Source

4.2.8.10 Setting Encoder Reset Activation

Sets the "Encoder Reset Source" to reset.

- Register name Encoder Activation
- VAL Rising Edge(Reset by rising edge of Input signal)
 - Falling Edge(Reset by falling edge of Input signal)
 - Any Edge(Reset by rising and falling edges of Input signal) Level High
 - (Reset state during the period of "High" of Input signal) Level Low

(Reset state during the period of "Low" of Input signal)

(Example)

Encoder Activation : Rising Edge

Encoder Reset Source	Frame End
Encoder Reset Activation	Rising Edge 🗸 🗸
Encoder Reset	Rising Edge
Encoder Value	Falling Edge
Encoder Value At Reset	Any Edge
User Set Control	Level Low
Transport Layer Control	

Figure 4-2-8-10 Encoder Activation

4.2.9 User Set Control

4.2.9.1 Setting Memory Selection

Selects the location of camera setting data saved in the flash memory.

- Register name
 User Set Selector
- VAL Default / User Set 1(Factory setting / User setting)

(Example)

User Set Selector : User Set 1

User Set Control	
	User Set 1 👻
User Set Default	Default
Transport Layer Control	User Set 1

4.2.9.2 Setting Memory Loading

(Reading the camera setting data from the flash memory)

The camera setting data selected by "User Set Selector" is read from the flash memory and is used to operate the camera.

Register name
 User Set Load

• VAL Execute()

(Example)

User Set Selector : User Set 1(Selecting User setting)

User Set Load : Execute()(Loading User setting data)

User Set Selector	User Set 1	
User Set Load	Execute()	
User Set Save	Execute()	

Figure 4-2-9-2 User Set Load

4.2.9.3 Setting Memory Saving

(Saving the camera setting data into the flash memory)

The current camera setting data is saved in the flash memory.

Register name
 User Set Save

VAL Execute()

(Example)

User Set Selector : User Set 1(Selecting User setting)

User Set Save : Execute()(Saving User setting data)

User Set Load	Execute()	
User Set Save	Execute()	
User Set Default	User Set 1	

Figure 4-2-9-3 User Set Save

4.2.9.4 Resetting Factory camera setting

Follow the steps below to set the camera setting at the time of factory shipping. ①Select "Default" on "User Set Selector"

User Set Selector : Default

User Set Control	
User Set Selector	Default
User Set Load	Default
User Set Save	User Set 1

Figure 4-2-9-4-1 User Set Selector

②Set the "Execute()" on "User Set Load "

User Set Load : Execute()

The camera setting data at the time of factory shipping is read from the flash momory and is used to operate the camera.

User Set Selector	Default	
User Set Load	Execute()	
User Set Save	Execute()	

Figure 4-2-9-4-2 User Set Load

* The camera setting data at factory shipping can be used to operate the camera by the step 2 until the power for camera is off.

After the power is off and then on, the previous camera setting data is used to operate

65

the camera unless the step $\ensuremath{\Im}$ below is not followed.

③Set the "Execute()" on "User Set Save "

User Set Save : Execute()

The camera setting data at factory shipping can be used to operate the camera even after the power for camera is off.

User Set Load	Execute()	
User Set Save	Execute()	
User Set Default	User Set 1	

Figure 4-2-9-4-3 User Set Save

4.2.10 Transport Layer Control

4.2.10.1 Setting Persistent IP

Sets IP by checking the box.

- Register name Gev Current IP Configuration Persistent IP
- VAL True/False

Transport Layer Control	
Payload Size	6291456
GigE Vision	
Gev Supported Option Selector	User Defined Name
Gev Interface Selector	0
Gev MAC Address	D8-16-0A-00-C0-01
Gev Current IP Configuration LLA	\checkmark
Gev Current IP Configuration DHCP	
Gev Current IP Configuration Persistent IP	
Gev Current IP Address	169.254.19.134
Gev Current Subnet Mask	255.255.0.0
Gev Current Default Gateway	0.0.00
Gev Persistent IP Address	
Gev Persistent Subnet Mask	
Gev Persistent Default Gateway	

Gev Current IP Configuration Persistent IP	
Gev Current IP Address	169.254.19.134
Gev Current Subnet Mask	255.255.0.0
Gev Current Default Gateway	0.0.0.0
Gev Persistent IP Address	192.168.250.200
Gev Persistent Subnet Mask	255.255.0.0
Gev Persistent Default Gateway	169.168.250.254

Figure 4-2-10-1 Gev Current IP Configuration Persistent IP

When the box is checked, Persistent IP address, Persistent Subnet mask and Persistent Default gateway are effective.

4.2.10.2 Packet Size

Packet size can be changed via the GevSCPSPacketSize camera register.

Register name G	ev SCPS Packet Size
-----------------	---------------------

• \/AI	512 ~	9152 *
	512	3152

(Example)

Gev SCPS Packet Size : 8964

Gev MCSP	0x0
Gev Stream Channel Selector	0
Gev SCP Interface Index	0
Gev SCP Host Port	0xC04C
Gev SCPS Fire Test Packet	
Gev SCPS Do Not Fragment	
Gev SCPS Packet Size	8964
Gev SCPD	0
Gev SCDA	169.254.132.111

Figure 4-2-10-2 Gev SCPS Packet Size

1 packet contains not only image data, but also a data header with transmission information. Therefore, by increasing the packet size, the number of packets to send can be reduced, reducing the overall data volume.

Notes:

Do not set the size larger than your network's MTU (Maximum Transmission Unit).Doing so will result in image data not being able to be sent.

4.2.10.3 Packet Delay

Packet Delay can be set via the following register.

۰R	egister name	Gev SCPD		
• V	AL	0~4294967295		
(Exa	ample)			
G	Gev SCPD : 50			
	Gev SCPS Pa	icket Size	8964	
	Gev SCPD		50	
	Gev SCDA		169.254.132.11	1

Figure 4-2-10-3 Gev SCPD

Notes:

Packet Delay is set to 0 at the time of shipping; however it should be set to as large a value as possible to obtain stable image data.

However, if the value is too large, the frame rate will drop. See 4.4 "Calculating the maximum value of packet delay" to set the most suitable value.

4.2.11 NED additional features

4.2.11.1 Setting Pixel Correction

Sets the method of the pixel correction.

 Register name 	NED_FFCMode	
• VAL	Disable	(Factory black correction)
	Factory white	(Factory black and white correction)
	User white	(Factory black and user white correction)
	User black + Fa	ctory white
		(User black and factory white correction)

User black + User white

(User black and user white correction)

(Example)

NED_FFCMode : User white

NED additional features	
NED_FFCMode	User white 👻
NED_PRNUTarget	Disable
NED_PRNUCalibration	Factory white
NED_FPNCalibration	User white
NED_ObjectDirectionMode	User black + User white
NED_LineSpatialCorrection	1.000

Figure 4-2-11-1 NED_FFCMode

4.2.11.2 Setting Pixel Correction Target Value

Sets the target level of the white pixel correction data.

Usually use "800" of factory setting as the target level but changeit correspondingly.

'RNU larget

• VAL 0 to 1023 (in increments of 1DN))

(Example)

NED_PRNUTarget : 800

NED_FFCMode	Factory white	
NED_PRNUTarget	800	
NED_PRNUCalibration	Execute()	

Figure 4-2-11-2 NED_PRNUTarget

4.2.11.3 Saving White Pixel Correction Data

Acquires current white pixel correction data and saves it in the flash memory. One set of correction data can be saved for each step of analog gain.

- Register name NED_PRNUCalibration
- VAL Execute()

(Example)

NED_PRNUCalibration : Execute()

NED_PRNUTarget	800
NED_PRNUCalibration	Execute()
NED_FPNCalibration	Execute()

4.2.11.4 Saving Black Pixel Correction Data

Acquires current black pixel correction data and saves it in the flash memory. One set of correction data can be saved for each step of analog gain.

- Register name NED_FPNCalibration
- VAL Execute()

(Example)

NED_FPNCalibration : Execute()

NED_PRNUCalibration	Execute()	
NED_FPNCalibration	Execute()	
NED_ObjectDirectionMode	Forward	

Figure 4-2-11-4 NED_FPNCalibration

4.2.11.5 Setting conditions of White pixel correction and Black correction

• Setting conditions of white pixel correction

Remove the lens cap so that light enters the camera. Place a uniformly white object fully in the camera view. Now Arbitrary white correction data can be acquired.

When this is done with the lens attached, lens and illumination shading will also be corrected at the same time. However, dark and light details of the white object will be picked out, so the lens should be defocused.

 Setting condition of black pixel correction Put on a lens cap to darken the camera view.

4.3 Setting Procedure of External Trigger Settings (for Examples)

4.3.1 One-phase Trigger setting (for Example)

This is the setting procedure in the case that "LineIn3" as "Line Selector" and "TTL" as "Line Format" are used.

 Setting No-Permission before using External Trigger After selecting "Trigger Selector" in the categories of "Acquisition Control", set as follows.

Trigger Selector : Exposure Start (See section 4.2.4.2)

Trigger Mode: Off (See section 4.2.4.3 but set "Off" at this time)

- Note: Do not skip the step ① above, otherwise the wave pattern and the image may not be output properly.
 - Setting "Line Selector" and "Format" of External Trigger Signal (LineIn1/ LineIn2/ LineIn3) (TTL/RS422NotTerminate/RS422Terminate/LVDS) After selecting "Line Selector" in the categories of "Digital IO Control", (Example) "LineIn3" and "TTL" Line Selector : LineIn3 (See section 4.2.6.1) Line Format : TTL (See section 4.2.6.5)
 - Remark: Other External Trigger Signal format can be set on the remaining selection of "Line Selector". These settings can be saved in selection of "Line Selector" respectively.
 - Selecting External Trigger Signal Type
 External Trigger Signal Type can be set below.
 After selecting "Trigger Sourcer" in the categories of "Acquisition Control", set as follows.
 (Example) "LineIn3" and "Rising Edge"
 Trigger Source : LineIn3
 Trigger Activation : Rising Edge
 - ④ Setting Permission before using External Trigger Setting After selecting "Trigger Mode" in the categories of "Trigger Selector", set as follows.

Trigger Mode : On (See section 4.2.4.3)

Remark: The above settings can be saved. (See section 4.2.8.3 "Setting Memory Saving")

4.3.2 Two-phase Trigger setting (for Example)

This is the setting procedure in the case that "LineIn1" and "LineIn2" as "Line Selector" and "HighResolution" as "Encoder Mode" are used.

- Setting No-Permission before using External Trigger After selecting "Trigger Selector" in the categories of "Acquisition Control", set as follows.
 Trigger Selector : Exposure Start (See section 4.2.4.2)
 Trigger Mode : Off (See section 4.2.4.3 but set "Off" at this time)
- Note: Do not skip the step ① above, otherwise the wave pattern and the image may not be output properly.
- Setting External Trigger Signal Format (LineIn1/ LineIn2/ LineIn3) and (TTL/RS422NotTerminate/RS422Terminate/LVDS) Set this according to sections 4.2.6.1 and 4.2.6.5. This setting is not required if the existing setting remains.
- Selecting External Trigger Signal Type for Encoder Source A (LineIn1) After selecting "Encoder Source A" in the category of "Encoder Control", set as follows.
 (Example) LineIn1 Encoder Source A: LineIn1 See section 4.2.7.2
- Selecting External Trigger Signal Type for Encoder Source B After selecting "Encoder Source B" in the category of "Encoder Control", set as follows.
 (Example) LineIn2 Encoder Source B: LineIn2 See section 4.2.7.3
(5) Selecting Encoder Mode After selecting "Encoder Mode" in the category of "Encoder Control" set as follows.
(Example) HighResolution Encoder Mode: HighResolution See section 4.2.7.4
(6) Selecting External Trigger Signal Type "External Trigger Signal Type" can be set below.

After selecting "Trigger Selector" in the category of "Acquisition Control", set as follows. (Example) Encoder 1 and Rising Edge

Trigger Source : Encoder1

Trigger Activation : Rising Edge

- Setting Permission before using External Trigger Setting After selecting "Trigger Mode" in the categories of "Trigger Selector", set as follows.
 Trigger Mode : On (See section 4.2.4.3)
- Remark: The above settings can be saved. (See section 4.2.8.3 "Setting Memory Saving")

4.3.3 Software Trigger setting (for Example)

This is the setting procedure in the case that "Software Trigger" are used.

- Select the trigger type.
 Set the TriggerSelector in the Acquisition Control category to Frame Active.
 Trigger Selector : Frame Active
- 2 Turn on the trigger mode.Trigger Mode : On
- Selection of the external trigger signal
 Set TriggerSource in the Acquisition Control category to Software.
 Trigger Source : Software

(4) Trigger signal input

The trigger signal is entered when the TriggerSoftware in the Acquisition Control category is executed.

Trigger Software : Execute()

Remark: The above settings can be saved. (See section 4.2.8.3 "Setting Memory Saving")

4.4 Calculating the Maximum Value of Packet Delay

The maximum value for the packet delay setting can be calculated as below. In order to achieve the desired frame rate without dropping frames, it is necessary to set a value smaller than the maximum packet delay.

Payload Size = Width x Height x (No. of Bytes/pixel)

RGB8Packed : 3 Byte/pixel No. of packets in 1 frame = Payload Size / (Packet Size-Data Header:36 Bytes) Transfer time for 1 frame=(Payload Size+No. of packets/frame x Data Header) /Gigabit Ethernet Transfer Rate (Max 125 Mbyte/s)

Notes:

The maximum Gigabit Ethernet transfer rate may vary depending on the processing power of your PC and NIC. Allowing some margin, it is recommended to calculate around 110~120 Mbytes/s.

1 Frame Scan Period = 1 Line Scan Period x Height

1 Frame Time Margin = 1 Frame Scan Period - 1 Frame Transfer Period Packet Delay Time = 1 Frame Time Margin / No. of packets/frame

Max. Packet delay value = Packet Delay time [ns] x 60 / 1000

e.g. Minimum scan period at 4096 pixels (Width: 4096, Height: 2048, RGB8Packed, 1 Line Scan Period: 200.0us. Packet Size: 4000, Transfer Rate: 120Mbyte/s)

Payload Size= 25165824 (Bytes/Pixel)No. of packets/frame= 6349Transfer Period for 1 frame = 211620 [us]1 Frame Scan Period= 409600 [us]1 Frame Time Margin= 197980 [us]Packet Delay Time= 31182.9 [ns]Packet Delay Setting Value = 1871

(Framerate = 2.5 [fps])

4.5 Exposure Mode and Timing

The camera has three exposure modes.

4.5.1 Free run Exposure Mode

The free run exposure mode can be used when the "Trigger Mode" is "Off" (Disable). (See section 4.2.4.3 but set "Off" at this time)

The Acquisition Line Rate and the Programmable Exposure Time are set in the camera control registers.

The range of the settable Line rate and the programmable exposure time are shown below.

Table 4-5-1-1 Free Run Exposure Time

1/scan	Acquisition Line Rate (Hz)	300~30030
р	Exposure Time (µs)	2.000~3331.000 *1

*1 : The programmable exposure time (μ s) can be set in increments of 0.100 μ s.

The relations of the programmable exposure time (μ s) and the line rate (Hz) are as follows.

Programmable exposure time $\leq =$ (1 / Line rate) - 2.3 µs

Figure 4-5-1 Free Run Exposure Mode

4.5.2 External Trigger (Timed) Exposure Mode

The external trigger (Timed) exposure mode can be used when "On" (Enable) on "Trigger Mode" and "Timed" on "Exposure Mode" are set.

The line period is determined by the time from rising edge to rising edge of the trigger pulse cycle. The start of each exposure is determined by the rising edge of the trigger pulse cycle. The exposure time is set by the programmable exposure time.

The range of the settable line period and the programmable exposure time are shown below.

Table 4-5-2 External Trigger (Timed) Exposure Time

а	Trigger pulse Η time (μs)	≧2.9
b	Trigger pulse L time (μs)	≧2.9
С	Trigger pulse cycle (µs)	≧119.0
р	Programmable exposure time (µs)	2.000~3331.000 *1

*1 : The programmable exposure time (μ s) can be set in increments of 0.100 μ s.

The relations of the programmable exposure time (μ s) and the line period (μ s) are as follows.

Programmable exposure time \leq Line period - 2.3 µs

c: Line period (µs)

Figure 4-5-2 External Trigger (Timed) Exposure Mode

4.5.3 External Trigger (TriggerWidth) Exposure Mode

The external trigger (Trigger Width) exposure mode can be used when "On" (Enable) on "Trigger Mode" and "Trigger Width" on "Exposure Mode" are set.

The line period is determined by the time from rising edge to rising edge of the trigger pulse cycle. The start of each exposure is determined by the rising edge of the trigger pulse cycle. The exposure time is set by the trigger pulse H time.

The range of the settable line period is shown below.

Table 4-5-3 External Trigger (Trigger Width) Exposure Time

а	Trigger pulse H time (µs)	≧15.9
b	Trigger pulse L time (µs)	≧2.9
С	Trigger pulse cycle (µs)	≧119.0

Figure 4-5-3 External Trigger (Trigger Width) Exposure Mode

4.6 Setting Offset

In the diagram below, the horizontal axis indicates the volume of light and vertical axis indicates the output.

Fs shows the output at saturation. Dd shows the output at darkness. (Both Fs and Dd are digital.) Se shows for the saturation current, or the amount of exposure when the output saturates.

Figure 4-6-1 Saturation Exposure and Dark Current Output

By setting the offset, you can set the Y-intercept arbitrarily. DF shows the digital offset value. The gradients of lines do not change.

See section 4.2.5.3 for setting Offset.

Figure 4-6-2 Offset Adjustment

• Adjust gain and offset to meet your system's requirements.

4.7 Setting Gain

The camera can adjust the analog gain (x1 to X10.0 in 8 steps) and the digital gain. As the diagram below indicates, increasing the gain setting increases the slope of the camera's response curve and results in a higher camera output for a given amount of light.

See section 4.2.5.1 for setting Analog gain and section 4.2.5.2 for setting Digital gain.

Figure 4-7-1 PGA Gain Adjustment

- Gain and noise values are proportionally related.
- Adjust amount of gain in accordance with the requirements of your camera system.

Gain-Sensitivity is shown below.

	Analog Amplifier		Sensitivity (V/lx⊡s)
0	x1.00	0.0dB	40
1	x2.00	6.0dB	80
2	x3.00	9.5dB	120
3	x4.00	12.0dB	160
4	x5.00	14.0dB	200
5	x6.00	15.6dB	240
6	x8.00	18.1dB	320
7	x10.00	20.0dB	400

Table	4-7-1	Gain-Sensitivity
Table	T I I	

Digital gain x1, Pixel correction: default, (Factory white correction data, Correction level 800DN)

4.8 Pixel Correction

Generally speaking, image sensors (CCD, CMOS and so on) have fixed pattern noise and photo response non-uniformity. When you use the lens, lens shadings and light sources also can cause non-uniformity. The camera is set to the optimal correction before shipping in order to provide images of high grade. The camera also has the function of user white correction to cope with lens shading and non-uniform illumination.

Cal_bl : Output data of each pixel at perfectly dark (factory correction) Cal_wh : Output data of each pixel in uniform illumination (factory correction) or in taking a picture of subject for correction (user white correction)

Target_Val : Target value for user correction (10bit output conversion value) Vin:Input data (Before correction) Vout :Output data (After correction) The corrected data is expressed in the following equation. Vout=(Vin-Cal bl) x Target val / (Cal wh-Cal bl)

is corrected.

Figure 4-8-1 Waveform and image before and after bit correction

4.9 Gamma Correction Setting

Switches Gamma correction value.

The relation between Input and Output should be calculated to the following formula.

Output = 1023* (Input / 1023) ^ (gamma)

Figure 4-9-1 Gamma Correction Characteristics

5 Basic Camera Setting Checks

5.1 Before Power On

Check whether there are any dents or scratches on the camera. There might have been damage to the camera's connectors or internals during transport.

①Check the pin assignments of the power cable(See figure 3-3-1 and table 3-3-1)
②Check that your network device supports 1000-Base T and Jumbo Frames.
Note:

If your device does not support the above, the network transfer speed will be adjusted to that of the slowest device. It may not be possible to capture images correctly due to data loss.

③Check the devices' interconnectivity.

Note:

Use a CAT-5e or above LAN cable. In cases where cable length is long, CAT-6 or above is recommended.

Be sure that the network on which you connect your GigE camera is a dedicated network and not shared with any other data transmitting devices. Not only will image data not be correctly obtained, it may also interfere with the data transmission.

If you are connecting multiple cameras, check the camera output data rate and the network bandwidth, and set the packet delay appropriately.(See 4.4)

5.2 After Power On

①Using a GENiCAM[™] compatible camera control software package (such as the included GigEGrab), execute camera discovery and confirm that the camera features can be read.

②Set the exposure mode (trigger mode), video output format, etc.

③Start image capture with a GigE Vision® compatible viewer software package.

Note:

If you are using a firewall or security software, it may not be possible to receive image data. In this case either change the settings or stop the software.

6 Sensor Handling Instructions

6.1 Electrostatic Discharge and the Sensor

The CMOS sensors are susceptible to damage from electrostatic discharge and can deteriorate as a result. Take care when handing the sensor.

6.2 Protecting Against Dust, Oil and Scratches

The CMOS sensor window is part of the optical path and should be handled like other optical components with care. If you use the camera in a dusty area, prepare a dust-proof enclosure. Dust can obscure pixels, producing dark lines on the image.

6.3 Cleaning the Sensor Window

Dust: Can usually be removed by blowing the window surface using a compressed air blower.

Oil: Wipe the window with a lint-free cloth wiper moistened with ethyl alcohol carefully and slowly.

When there is dust or smudges on the sensor window, it appears in the same way as noise on the image. Please remove it appropriately.

7 Troubleshooting

The following pages contain several troubleshooting charts that can help you find the cause of problems users sometimes encounter.

7.1 No Image

7.2 Noise on Image

88

7.3 Camera becomes hot

8 Others

8.1 Notice

- No part of this document may be reproduced in any form, in whole or in part, without the express written consent of NED.
- The contents of this document are subject to change without prior notice.
- Every care has been taken in the preparation of this User's Manual. If you should discover any errors or omissions, please notify your nearest NED representative.

8.2 Contact for support

Nippon Electro-Sensory Devices Corporation Head Office 2-5-12, Itachibori, Nishi-Ku, Osaka 550-0012, Japan Phone +81-6-6534-5300 Fax +81-6-6534-6080

Tokyo Office

Gibraltar Ohi BLD., Room No.402 1-45-2, Ohi, Shinagawa-Ku, Tokyo 140-0014, Japan Phone +81-3-5718-3181 Fax +81-3-5718-0331

West Japan Office

Twin Square 1-8-28 Enokida, Hakata-Ku, Fukuoka, 812-0004, Japan Phone +81-92-451-9333

Fax +81-92-451-9335

URL

http://ned-sensor.co.jp/en

E-Mail

sales@ned-sensor.com

8.3 Product Support

If there is a problem with your camera after checking it in accordance to the troubleshooting, turn off the power and call your NED representative.

When contacting us with a problem, please inform us of the status of the camera.

Revision History

Revision Number	Date	Changes
01	01 Oct 2020	Initial release